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Abstract

General solutions of two-dimensional piezoelectricity, which yield all solutions of 2-D boundary values problems,
are obtained by combining four complex conjugate pairs of independent eigensolutions, each containing an arbitrary
analytic function. The forms of representation are fundamentally different for 14 different classes of nondegenerate and
degenerate piezoelectric materials, as determined by the multiplicity and types of eigenvalues. Degenerate materials pos-
sess high-order eigensolutions, in which the eigenvectors of equal and lower orders are intrinsically coupled. Such cou-
pling is nonexistent in nondegenerate cases including the well-known and analytically simple case with no multiple
eigenvalues. The present analysis is drastically simplified by using the compliance-based formalism, instead of the stiff-
ness-based, extended Eshelby–Stroh formalism. Explicit expressions are obtained for the eigensolutions, the pseudomet-
rics, and the intrinsic tensors characterizing piezoelectric materials of every type.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials have received considerable attention because of their use in monitoring and
controlling structural components. Such materials show coupling effects between electric fields and elastic
response. The constitutive equations of linear piezoelectricity are well known. Based on these equations, a
number of three-dimensional and two-dimensional solutions for piezoelectric materials (Sosa, 1991; Pak,
1992; Sosa and Castro, 1994; Suo et al., 1992; Ruan et al., 1999; Shodja and Kamali, 2003), and homoge-
neous or multilayered piezoelectric plates have been obtained (Ray et al., 1992; Mitchell and Reddy, 1995;
0020-7683/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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Bisegna and Maceri, 1996; Huang and Wu, 1996; Heyliger, 1997; Vel and Batra, 1999). Nevertheless, the
subject has not been as fully developed, in an analytical sense, as anisotropic elasticity. Various important
problems, such as fundamental singular solutions (Green�s functions) for some simple domains, problems
of infinite regions with holes and inclusions, etc., have been investigated sparsely for nondegenerate piezo-
electric materials, let alone for the degenerate cases.

The remarkable richness of results in two-dimensional elasticity suggests that many of such results
may be extended to two-dimensional piezoelectricity. This is due primarily to the feasibility of using
analytic functions of complex variables to represent the general solution. For nondegenerate piezoelectric
materials, the complex variable formulation has been developed by extending the Eshelby–Stroh formal-
ism of anisotropic elasticity to include the electric effect (Ting, 1996). This yields a characteristic equa-
tion of the eighth degree for four complex conjugate pairs of eigenvalues, and a system of four linear
equations for the eigenvectors associated with the three displacement components and one electric po-
tential. However, the eigenvectors of the Eshelby–Stroh formalism have very lengthy analytical expres-
sions in comparison with the eigenvectors of the compliance-based formalism, even if the material is
nondegenerate. [For the various degenerate cases in plane elasticity, the simple expressions of the latter
formalism (Yin, 2000a) are contrasted to the lengthy expressions of the Eshelby–Stroh formalism (Yin,
2000b)]. But explicit expressions of the eigenvectors are required in various analytical formulations and
solutions of piezoelectricity, e.g. boundary integral equations and Green�s functions of infinite and finite
domains.

It is also well-known in 2-D elasticity that the representation of the general solution of nondegenerate
materials, and all particular solutions deduced from it, cannot be applied to the various degenerate cases,
including the important case of isotropic and transversely isotropic materials. In such cases, there are
high-order eigensolutions associated with a repeated eigenvalue. A kth-order eigensolution is not charac-
terized by a single eigenvector, but shows intrinsic coupling of k + 1 eigenvectors with orders increasing
from 0 to k. This results in complication of analysis (for example, the appearance of higher-order kernel
functions in boundary integrals) that is not found in the nondegenerate cases. At the same time, it also
causes some simplification of the results and expressions due to a reduced number of distinct complex
variables.

That the stiffness-based formalism yields more complicated expressions of the eigenvectors than the com-
pliance-based formalism in the nondegenerate case of 2-D elasticity has been remarked by Stroh (1958).
The disadvantage of the former becomes even more pronounced in the various degenerate cases, where
one needs to obtain the higher-order eigensolutions by differentiating the zeroth-order eigensolutions
repeatedly with respect to the eigenvalue (Yin, 2000a,b). In contrast, the compliance-based formalism re-
duces the key eigenrelation to a linear equation involving a 2 · 2 eigenmatrix M(l), whose solution can
be obtained effortlessly. When this formalism is extended to include piezoelectric effects, the matrix function
M(l) that governs the (reduced) eigenvector has the dimension 3 · 3, instead of 2 · 2. Compared to the 2-D
anisotropic elasticity problem, the number of distinct types of eigenvalues increases from 5 to 11, and the
number of distinct classes of materials increases from 5 to 14. Each distinct class of material has a peculiar
representation of the general solution in terms of four complex conjugate pairs of eigensolutions of the zer-
oth or higher orders. None of these 14 types can be eliminated, i.e., replaced entirely by the others. Some
eigensolutions of degenerate piezoelectric materials require new analytical forms of expression that are not
found in 2-D elasticity (Yin, 2000a) or in unsymmetric laminated plate theory (Yin, 2003a, 2000b). Thus,
although the general scheme of the present investigation parallels similar developments in these two simpler
theories, the details of the case-by-case analysis are considerably different, leading to a greater variety of the
types of eigenvalues and classes of materials, and algebraic complexity of the solution spaces. The main
results of the present analysis are summarized in Theorems 1–9 and Appendix B of the paper, which
may provide a quick reference to the readers who are familiar with the analogous developments in 2-D elas-
ticity and coupled anisotropic plate theory.
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2. Governing equations: eigenvalues and zeroth-order eigensolutions

For an anisotropic piezoelectric material, let the components of the strain and stress tensors be assem-
bled in 1-D arrays
feg ¼ fex; ey ; ez; cyz; cxz; cxyg
T
; frg ¼ frx; ry ; rz; syz; sxz; sxygT: ð2:1Þ
Furthermore, let the electric field and the electric displacement be denoted by
fEg ¼ f�/;x;�/;y ;�/;zg
T
; fDg ¼ fDx;Dy ;DzgT; ð2:2Þ
where / is the electric potential, and the superscripts �T� indicate taking the transpose of a matrix or a vec-
tor. The constitutive relations of a linearly piezoelectric material are often given as follows:
frg ¼ ½C�6	6feg � ½L�TfEg; fDg ¼ ½L�3	6feg þ ½K�3	3fEg; ð2:3Þ

where the matrices [C], [L] and [K] consist of the elastic constants, the piezoelectric constants and dielectric
constants, respectively. The subscripts of the matrices show their dimensions.

In this work, we restrict attention to 2-D solutions, for which all components in Eqs. (2.1) and (2.2) de-
pend only on two coordinates x and y. Then the equation div{D} = 0 becomes Dx,x + Dy, y = 0 and, since
Dx and Dy are independent of z, there is a scalar function 1(x,y) such that
Dx ¼ 1;y ; Dy ¼ �1;x: ð2:4Þ
Since all components of {E} are independent of z, one has �/,xz = �/,yz = �/,zz = 0, so that
�/;z ¼ Ez ¼ constant: ð2:5aÞ
When all components of the strain are independent of z, the differential equations of compatibility imply
that ez must be a linear function of both x and y
ezðx; yÞ ¼ e0 þ xe1 þ ye2: ð2:5bÞ

Analogous to the case of two-dimensional elasticity, the determination of the general solution may be dras-
tically simplified by using the inverse form of the preceding constitutive relation, i.e.,
feg ¼ ½S�6	6frg þ ½R�TfDg; �fEg ¼ ½R�3	6frg � ½H �3	3fDg; ð2:6a;bÞ

½S�6	6 ½R�T

½R�3	6 �½H �3	3

" #
¼ ½C� ½L�T

½L� �½K�

" #�1

: ð2:7Þ
If there is no piezoelectric coupling, then [L]3·6 and [R]3·6 are null matrices. Furthermore, [S] = [C]�1 and
[H] = [K]�1. When coupling exists, [S] and [C] are not the inverses of each other and, if [C] is regarded as the
elastic stiffness matrix, [S] is not properly a compliance matrix since it also involves the elements of [K]
and [L].

In view of Eq. (2.5), the third rows of Eq. (2.6a,b) become, respectively
X
S3jrj þ

X
Rk3Dk ¼ ez; �

X
R3jrj þ

X
H 3kDk ¼ Ez: ð2:8Þ
These two equations may be solved to express rz and Dz in terms of ez, Ez and other components of {r} and
{D}. By substituting the resulting expressions into all equations of (2.6a) except the third one, and into the
first and second rows of Eq. (2.6b), then, after rearranging the order of equations and variables, one obtains
the constitutive relations for two-dimensional fields in the following form:
fex; ey ; cxy ; cxz; cyzg
T ¼ ½b�frx; ry ; sxy ; sxz; syzgT þ ½c�Tf1;y ;�1;xgT þ ½k�fez;EzgT; ð2:9aÞ
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f/;x;/;yg
T ¼ ½c�frx; ry ; sxy ; sxz; syzgT � ½a�f1;y ;�1;xgT þ ½j�fez;EzgT; ð2:9bÞ
where the constant matrices [b], [c] and [a] are expressed by
½a� ¼
a11 a12

a11 a22

� �
; ½c� ¼

c11 c12 c16 c15 c14
c12 c22 c26 c25 c44

� �
;

½b� ¼

b11 b12 b16 b15 b14

b12 b22 b26 b25 b24

b16 b26 b66 b56 b46

b15 b25 b56 b55 b45

b14 b24 b46 b45 b44

2
6666664

3
7777775
: ð2:10a;b;cÞ
Notice that the rows and columns of [b], and the columns of [c], are not marked by consecutive indices from
1 to 5, but rather marked by the sequence of indices 1, 2, 6, 5 and 4 that correspond to the positions of the
elements ex, ey, cxy, cxz and cyz in the six-dimensional array {e} of Eq. (2.1) before the rearrangement. This
ordering of indices is adopted so that, when the piezoelectric effect is absent, the present formulation re-
duces without change to the notation of Lekhnitskii�s formalism for two-dimensional anisotropic elasticity
(Lekhnitskii, 1963).

For a given constant Ez and a given bilinear function ez(x,y) = e0 + xe1 + ye2, any solution of Eq.
(2.9a,b) may be separated into a particular solution and a complementary solution. The latter is a solution
of Eq. (2.9a,b) with Ez = 0 and ez(x,y) � 0. Particular solutions are not unique, and we may choose one
such that {rx,ry,sxy,sxz,syz}

T = 0. Then Eq. (2.9b) reduces to
f/;x;/;yg
T þ ½a�f1;y ;�1;xgT ¼ ½j�fe0 þ xe1 þ ye2;EzgT;
which is clearly satisfied by an appropriate choice of the two quadratic functions /(x,y) and 1(x,y). Eq.
(2.9a) yields the strains of the particular solution
fex; ey ; cxy ; cxz; cyzg
T ¼ ½c�Tf1;y ;�1;xgT þ ½k�fez;EzgT:
Since the strains are linear in the coordinates, they automatically satisfy the compatibility equations. This
particular solution also trivially satisfies the equilibrium equation because all components of stress vanish
except for rz, and the latter is independent of z. This implies the following theorem:

Theorem 1. The general solution of two-dimensional linear piezoelectricity may be separated into (i) a

particular solution that has vanishing {rx,ry,sxy,sxz,syz}, a constant z-directional electric field Ez, and a
linearly varying ez, as shown by Eq. (2.5a,b), and (ii) a complementary solution which has vanishing Ez and ez in

the entire domain. The particular solution satisfies equilibrium of stress, compatibility of strain, and the

constitutive equations (2.9a) and (2.9b), and so must the complementary solution.

In the following, we always assume that a particular solution has been found in this or other manner,
and the attention will be restricted to the complementary solution, for which {ez,Ez}

T vanishes in Eqs.
(2.9a,b).

In the absence of body forces, the equilibrium equations of the stress field imply that the five stress com-
ponents of Eq. (2.9a,b) may be represented by the derivatives of a pair of stress functions F(x,y) and W(x,y)
rx ¼ F ;yy ; ry ¼ F ;xx; sxy ¼ �F ;xy ; sxz ¼ W;y ; syz ¼ �W;x: ð2:11Þ

We seek solutions for the displacements {u,m,w}, the stress potentials {Fy,�Fx,W}, the potential /(x,y) of
the electric field and the skew potential 1(x,y) of the electric displacement, in the following form:
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v ¼ fF ;y ;�F ;x;W; 1; u; m;w;/gT ¼ f ðz; l0Þn; z � x þ l0y; ð2:12Þ
where n is a complex constant vector. The scalar function f is analytic in the first argument z, and the com-
plex parameter l0 affects f explicitly as the second argument and implicitly through z.

The complex parameter l0 and the complex vector n will be identified as the material eigenvalues and
eigenvectors. The strain, stress and electric fields associated with (2.12) are easily obtained by differentia-
tion. Since sxy = �(F,y),x = �n1f,z(z,l0) = (�F,x), y = n2l0f,z(z,l0), one has
n1 ¼ �l0n2: ð2:13Þ
Eqs. (2.11)–(2.13), in conjunction with the strain–displacement relation, yield
h � fex; ey ; cxy ; cxz; cyz;/;x;/;yg
T ¼ f;zðz; lÞHðlÞfn5; n6; n7; n8gT; ð2:14aÞ

w � fF ;yy ; F ;xx;�F ;xy ;W;y ;�W;x; 1;y ;�1;xgT ¼ f;zðz; lÞWðlÞfn2; n3; n4gT; ð2:14bÞ
where the right-hand sides are evaluated at l = l0 and where the matrix functions H(l) and W(l) are
defined by
HðlÞ ¼

1 0 0 0

0 l 0 0

l 1 0 0

0 0 1 0

0 0 l 0

0 0 0 1

0 0 0 l

2
666666666664

3
777777777775
; WðlÞ ¼

�l2 0 0

�1 0 0

l 0 0

0 l 0

0 �1 0

0 0 l

0 0 �1

2
666666666664

3
777777777775
: ð2:15a;bÞ
Notice that each column of W(l) is orthogonal to all columns of H(l). Consequently
WTH ¼ 0; HTW ¼ 0: ð2:16a;bÞ

Eqs. (2.14), (2.15) and (2.9a,b) with vanishing Ez and ez yield
Hðl0Þfn5; n6; n7; n8gT ¼ ½b� ½c�T

½c� �½a�

" #
Wðl0Þfn2; n3; n4gT: ð2:17Þ
Pre-multiplication of the last equation by W(l0)
T gives
Mðl0Þg ¼ 0; ð2:18Þ

where
g � fn2; n3; n4gT; MðlÞ � WðlÞT½-�WðlÞ; ½-� � ½b� ½c�T

½c� �½a�

" #
: ð2:19a;b;cÞ
The 3 · 3 symmetric matrix function M(l) has the components
M11 ¼ b22 � 2b26l þ ð2b12 þ b66Þl2 � 2b16l
3 þ b11l

4;

M12 ¼ b24 � ðb25 þ b46Þl þ ðb14 þ b56Þl2 � b15l
3;

M22 ¼ b44 � 2b45l þ b55l
2; M13 ¼ c22 � ðc12 þ c26Þl þ ðc12 þ c16Þl2 � c11l

3;

M23 ¼ c24 � ðc14 þ c25Þl þ c15l
2; M33 ¼ �ða22 � 2a12l þ a11l

2Þ:

ð2:20Þ



2650 W.-L. Yin / International Journal of Solids and Structures 42 (2005) 2645–2668
Eq. (2.18) has a nontrivial solution for g if and only if l0 is a root of the characteristic equation
dðlÞ �jMðlÞ j¼ 0: ð2:21Þ

We define
J1ðlÞ ¼

�l 0 0

1 0 0

0 1 0

0 0 1

2
6664

3
7775 J3ðlÞ ¼

1 0 0 0 0 0 0

�l 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

2
6664

3
7775 ð2:22a;bÞ

J2ðlÞ ¼ J3ðlÞ½-�WðlÞ; JðlÞ ¼
J1ðlÞ
J2ðlÞ

� �
: ð2:22c;dÞ
Notice that J3H = I4. Premultiplying Eq. (2.22c) by H(l), one obtains, after some algebraic manipulation
HðlÞJ2ðlÞ ¼ ½-�WðlÞ þ

0 0 0

M11ðlÞ M12ðlÞ M13ðlÞ
0 0 0

0 0 0

M12ðlÞ M22ðlÞ M23ðlÞ
0 0 0

M13ðlÞ M23ðlÞ M33ðlÞ

2
666666666664

3
777777777775

ð2:23Þ
Hence, taking g to be a nontrivial solution of Eq. (2.18), the eight components of
n ¼ Jðl0Þg ð2:24Þ

satisfy Eqs. (2.13) and (2.17), and therefore yield a piezoelectric equilibrium solution of the strain, stress
and the electric fields via Eq. (2.14a,b). The roots of the characteristic equation (2.21) are the eigenvalues

of the material, and the associated vectors n are called zeroth-order eigenvectors. The eigenvalues occur
in complex conjugate pairs because the characteristic equation has real coefficients. Furthermore, �n, the
complex conjugate of n, is an eigenvector associated with the conjugate eigenvalue �l0. Then, according
to Eq. (2.12), for any complex analytic function f(z,l0),
v þ �v ¼ f ðz; l0Þn þ f ð�z; �l0Þ�n ¼ 2Re½f ðz; l0Þn� ð2:25Þ
yields real-valued F,y, �Fx, W, 1, u, m, w and /, whose derivatives, as shown by Eq. (2.14a,b), satisfy the pie-
zoelectric constitutive relations, the stress equilibrium equations, and the compatibility of strain. The com-
plex-valued function v = f(z,l0)n will be called a zeroth-order eigensolution associated with the eigenvalue
l0 (in contrast to the higher-order eigensolutions, to be introduced in the next section, which involve the
l-derivatives of the arbitrary function f(z,l) of the various orders in addition to the function itself). We
now give a proof of the complexity of the eigenvalues different from that given previously by Suo et al. (1992).

Theorem 2. The eigenvalues cannot be real if the material has a positive-definite energy density.

Proof. Suppose that Eq. (2.21) has a real root l0 then M(l0) is a real, singular matrix and Eq. (2.18) must
possess a real, nontrivial solution g = {n2,n3,n4}

T (if g is complex then both the real and imaginary parts of
g are also solutions) which yields a real eigenvector n = J(l0)g because J(l0) is also a real matrix. The
choice f � x + l0y gives f,z � 1 and the real eigensolution v = (x + l0y)n. For this eigensolution, Eqs.
(2.14a,b) and (2.17) imply that the energy density function vanishes
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1=2ðrxex þ ryey þ sxycxy þ sxzcxz þ syzcyz þ DxEx þ DyEyÞ ¼ 1=2wTh ¼ 1=2gTMðl0Þg ¼ 0
for a nontrivial field w of the stresses and the electric displacement:
wTw ¼ gTWðl0Þ
TWðl0Þg ¼ ðl4

0 þ l2
0 þ 1Þn2

2 þ ðl2
0 þ 1Þðn2

3 þ n2
4Þ > 0:
In the following, we assume that the energy density function is positive definite. Then there can be no
real eigenvalues. All eigenvalues may be grouped into two sets, where the first set {l}? consists of four
eigenvalues (not necessarily all distinct) with positive imaginary parts, and the second set, f�lg?, is the com-
plex conjugate of {l}?.

Another important property is the orthogonality (to be defined shortly) of the eigenvectors associated
with any pair of distinct eigenvalues. If l 5 l 0, then Eq. (2.22a,b) yield
J1ðl0ÞTJ2ðlÞ ¼ ðl0 � lÞ�1fWðl0ÞT � WðlÞTg½-�WðlÞ:
Hence, due to the symmetry of [-], one has
J1ðl0ÞTJ2ðlÞ þ J2ðl0ÞTJ1ðlÞ
¼ ðl0 � lÞ�1fWðl0ÞT½-�Wðl0Þ � WðlÞT½-�Wðl0Þ þ Wðl0ÞT½-�WðlÞ � WðlÞT½-�WðlÞg
¼ ðl0 � lÞ�1fMðl0Þ �MðlÞg: ð2:26Þ
If l and l 0 are distinct eigenvalues, with g and g 0 as the corresponding solutions of Eq. (2.18), then Eq.
(2.26) implies that the eigenvectors n = J(l)g and n 0 = J(l 0)g 0 satisfy
sn0; nt � n0T IIn ¼ g0TfJ1ðl0ÞTJ2ðlÞ þ J2ðl0ÞTJ1ðlÞgg ¼ 0; ð2:27Þ

where
II �
04	4 I4

I4 04	4

� �
ð2:28Þ
and Ik and 0k·k denote, respectively, identity and zero matrices of dimension k · k. Hence any two zeroth-
order eigenvectors n and n 0 associated with distinct eigenvalues are orthogonal in the sense of Eq. (2.27). In
particular, n is orthogonal to its complex conjugate vector:
sn; �nt ¼ 0: ð2:29Þ

In the following, sn 0,nb = sn,n 0b will be called the binary product of the two vectors n and n 0. It will be shown
later that Eq. (2.29) is also valid if one or both vectors n and n 0 are higher-order eigenvectors associated
with different multiple eigenvalues. Therefore, the eigenvectors belonging to an eigenvalue of multiplicity
p(1 6 p 6 4) span a p-dimensional subspace which is orthogonal to the subspaces of other simple or multi-
ple eigenvalues. Hence the eight dimensional complex vector space is the direct sum of a number of orthog-
onal subspaces, one for each distinct eigenvalue. In this work, orthogonality of n is always defined in the
sense of the binary product, whereas orthogonality of 3-D complex vectors (between g and the column vec-
tors of M(l), for example) is with regard to the usual scalar product.
3. Normal, abnormal and superabnormal eigenvalues: zeroth-order eigensolutions

In two-dimensional piezoelectricity, the mathematical structure of the solution space, and the analytical
form of the general solution for the different classes of materials, depend essentially on the multiplicity of
the eigenvalues, and on the three matricesM,W andW 0 evaluated at these eigenvalues. HereW denotes the
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adjoint matrix of M, and W 0 the derivative of W. These distinctions have profound effects, as seen in the
related previous works on anisotropic elasticity and laminated plates (Yin, 2000a,b and Yin, 2003a), and in
the results concerning the structure and singularity of Green�s functions (Yin, 2004, 2005, in press a, in press
b). Since the various classes of piezoelectric materials have different explicit expressions of the general solu-
tion, it follows that Green�s functions of finite and infinite domains, integral representations of the interior
solutions in terms of the boundary data, and singularity solutions of cracks and multi-material wedges all
assume fundamentally different mathematical forms depending on the classes of materials.

All eigenvalues l0 of the present problem will be classified into three major types depending on the rank
of the matrix M(l0):

(1) Normal eigenvalue, for which M(l0) is of rank 2.
(2) Abnormal eigenvalue, for whichM(l0) is of rank 1. Then the adjoint matrixW(l0) must be null. If the

multiplicity exceeds 2, this types is further divided into two subclasses:
Abnormal-a: W 0(l0) is not null;
Abnormal-b: W 0(l0) is a null matrix.

(3) Superabnormal eigenvalue, for which M(l0) is a null matrix.

Notice that Eq. (2.18) of the present problem involves a 3 · 3 matrixM(l), whereas the correspondingM
matrix in the related problems of 2-D anisotropic elasticity, and of anisotropic plates with bending-stretch-
ing coupling, has the dimension 2 · 2 (Yin, 2000a, 2003a,b). A 2 · 2 matrix has the peculiar property that it
is null if and only if its adjoint matrix is. Not so for a 3 · 3 matrixM(l) in piezoelectricity, which also yields
some new forms of eigensolutions that are not found in 2-D elasticity and coupled anisotropic plate theory.

The matrix function M(l) and its adjoint W(l) satisfy the polynomial identity
MðlÞWðlÞ ¼WðlÞMðlÞ ¼ dðlÞI3: ð3:1Þ

Differentiation yields
X

06k6n

ðn; kÞMðn�kÞðlÞWðkÞðlÞ ¼ dðnÞðlÞI3 ðn ¼ 1; 2; . . .Þ: ð3:2Þ
If l0 is not normal, thenW(l0) = 0, so that Eq. (3.2) with n =1 reduces toM(l0)W 0(l0) = d 0(l0)I3 and, since
M(l0) is a singular matrix, one must have d 0(l0) = 0. If l0 is superabnormal, then the matrixM(l0) is null,
and so must be W(l0). From Eq. (3.2) one has MW 0 = 0 and 2M 0W 0 = d00I3. Hence W 0(l0) is a singular
matrix and d00(l0) = 0. These results imply that the multiplicity of abnormal and superabnormal eigenvalues
are, respectively, at least 2 and 3.

Two related types of mathematical expressions are often used together in this paper: those involving sca-
lar and matrix functions of the complex parameter l, and the others involving the values of these functions
at an eigenvalue l0. It is convenient to adopt a special notation Uj0 to denote the value of a simple or com-
pound expression U at l = l0.

3.1. Zeroth-order eigenvector of a normal eigenvalue

For a simple or multiple normal eigenvalue l0,M(l0) has two independent columns. Then Eq. (2.18) has
only one independent solution g, because g must be orthogonal to the two independent columns ofM(l0).
Evaluating Eq. (3.1) at l = l0 one has
MWj0 ¼WMj0 ¼ 03	3:
Hence the nonvanishing columns of W(l0) are all proportional to g, so that W(l0) is of rank one. Not all
diagonal elements of W(l0) may vanish because otherwise the off-diagonal elements Wij =

p
(WiiWjj)
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(where i5 j and no summation is implied for the repeated indices) would also vanish and W(l0) would be
the null matrix, contradicting the assumption thatM(l0) is of rank 2. If the k th diagonal element Wkk does
not vanish, we let qk and g be, respectively, the kth column of I3 and W(l0). Then
g �Wðl0Þqk; W kk ¼ qT
kWðl0Þqk; Wðl0Þ ¼ ggT=W kk: ð3:3a;b;cÞ
Postmultiplication of Eq. (3.2) by W(l0) yields
WM0Wj0 ¼ d0Wj0 ¼ fd0ðl0Þ=W kkgggT:
This matrix equation has only one nonzero element at the kth diagonal position, i.e.,
gTM0ðl0Þg ¼ W kkd
0ðl0Þ;
If l0 is a simple eigenvalue, then d(l0) = 0 but d 0(l0)50, and the eigenvector n = J(l0)g has a nonvanishing
binary product with itself:
sn; nt ¼ gTfJ1ðl0Þ
T
J2ðl0Þ þ J2ðl0Þ

T
J1ðl0Þgg ¼ gTM0ðl0Þg ¼ W kkd

0ðl0Þ: ð3:4Þ

If the four eigenvalues in {l}? are all distinct, then eight zeroth-order eigenvectors may be obtained, and

they are mutually orthogonal in the sense of Eq. (2.27). Let Z be the 8 · 8 base matrix containing the eigen-
vectors as the column vectors, such that the submatrix Z? of the first four columns are eigenvectors asso-
ciated with the eigenvalues in {l}?, and the last four columns are the complex conjugates of the first four.
Orthogonality of the eigenvectors implies that
X � ZTIIZ ð3:5Þ

is a diagonal matrix, in which all the diagonal elements do not vanish and they have the form of Eq. (3.4).
Hence ZTIIZ is nonsingular and so must be Z. It follows that the eight eigenvectors associated with distinct
eigenvalues are independent. Each eigenvector, when multiplied by an arbitrary analytic function, gives an
eigensolution in the form of Eq. (2.12).

Notice that in a complex vector space, orthogonality of a set of vectors does not ensure their indepen-
dence. For example, the scalar product of {0,1, i} and {0, i,�1} vanishes, and {0,0,1, i, 0,0,1, i} and
{0,0, i,�1,0,0, i,�1} are orthogonal in the sense of the binary product, but the two vectors in each pair
are also proportional, and thus linearly dependent. Hence the independence of the eight eigenvectors can-
not be deduced merely from their orthogonality, Eq. (2.27). One must also use Eq. (3.4) to ensure that each
nontrivial eigenvector has a nonvanishing binary product with itself, which implies the invertibility of X,
and the latter in turn implies the invertibility of Z.
3.2. Zeroth-order eigenvectors of abnormal and superabnormal eigenvalues

If a multiple eigenvalue l0 is abnormal or superabnormal, thenM(l0) has at most one independent col-
umn. The adjoint matrix W(l0) is null, so that it has no nontrivial column to be used as the g-vector for
obtaining a zeroth-order eigenvector. The latter must be obtained in different ways. The results are also sub-
stantially different, and depend essentially on the type of eigenvalues. WithW(l0) = 0, andM(l0) singular,
Eq. (3.2) becomes, for n = 1 and 2
MW0j0 ¼ 0; ðW00Mþ 2W0M0Þj0 ¼ d00ðl0ÞI3: ð3:6a;bÞ

For an abnormal l0,M(l0) is a symmetric matrix of rank one, so that it has at least one nonzero diagonal

element, say, mk in the kth column. Let qk and v denote, respectively, the kth column of I3 and ofM(l0). Then
v ¼Mðl0Þqk; Mðl0Þ ¼ vvT=mk ð3:7a;bÞ

and Eq. (3.6a) implies that W 0(l0) is singular.
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Consider any two independent three-dimensional vectors g1, and g2, both orthogonal to v. Eq. (3.7b)
implies
Mðl0Þgk ¼ 0 ðk ¼ 1; 2Þ

One obtains two zeroth-order eigenvectors n1 = J(l0)g1 and n2 = J(l0)g2, and Eq. (2.12) gives the corre-
sponding eigensolutions. Since n contains the three elements of g as its second through the fourth elements,
linear independence of g1 and g2 implies the same for n1 and n2. Thus, while a normal eigenvalue, whether
simple or multiple, has only one independent zeroth-order eigensolution, each abnormal eigenvalue has two
independent zeroth-order eigensolutions. For definiteness, we make a specific choice of the eigenvectors in
the following manner. Consider the matrix function
UkðlÞ � MkkðlÞI3 þ fMðlÞqkgqT
k � qkq

T
kMðlÞ ðno sum on kÞ ð3:8Þ
Then
Mkkðl0Þ ¼ mk 6¼ 0; Ukðl0Þqk ¼ v; vTUkðl0Þ ¼ ðvTvÞqT
k : ð3:9a;b;cÞ
Hence the kth column of Uk(l0) is v. The other two columns are orthogonal to v, since the vector on the
right-hand side of Eq. (3.9c) has zero elements except for the kth. Let the two corresponding columns of the
matrix function Uk(l) be denoted by g1(l) and g2(l). Then, for k = 1,2,3, respectively, one has the follow-
ing expressions for the functions g1, g2, (Mg1) 0 and (Mg2)

0

k ¼ g1 ¼ g2 ¼ ðMg1Þ
0 ¼ ðMg2Þ

0 ¼
1 f�M12;M11; 0gT f�M13; 0;M11gT f0;W 0

33;�W 0
23g

T f0;�W 0
23;W

0
22g

T ð3:10aÞ
2 fM22;�M12; 0gT f0;�M23;M22gT fW 0

33; 0;�W 0
13g

T f�W 0
13; 0;W

0
11g

T ð3:10bÞ
3 fM33; 0;�M13gT f0;M33;�M23gT fW 0

22;�W 0
12; 0g

T f�W 0
12;W

0
11; 0g

T ð3:10cÞ
For an abnormal eigenvalue l0,M(l0) has at least one nonzero diagonal element Mkk(l0). Then the vectors
g1 and g2 corresponding to k in Eqs. (3.10a), (3.10b) or (3.10c) yield two independent zeroth-order eigen-
vectors Jg1j0 and Jg2j0, and no more than two since the subspace orthogonal to v is two-dimensional.

For a superabnormal eigenvalue l0,M(l0) is the null matrix, so that Eq. (2.18) is trivially satisfied by any
g. If the three columns of I3 are chosen to be the g-vectors, then Eq. (2.24) yields three independent zeroth-
order eigenvectors given by the three columns of J(l0). Each eigenvector, when multiplied by an arbitrary
analytic function of x + l0y, is an eigensolution of the zeroth order.

Summarizing the results of the preceding analysis, one has the following theorem:

Theorem 3. The number of independent zeroth-order eigensolutions possessed by a normal, abnormal and
superabnormal eigenvalue is exactly one, two and three, respectively. Hence the multiplicities of the eigenvalues

may range from these numbers to four.
4. Higher-order eigensolutions and the derivative rule

4.1. Identities involving J(l), M(l), W(l) and their derivatives

The binary product as defined by Eq. (2.27) for two vectors may be extended to two matrices of row
dimension eight, regardless of their column dimensions. Eq. (2.26) assumes the form
ðl � ~uÞsJðlÞ; Jð~uÞt ¼ ðl � ~uÞJðlÞTIIJð~uÞ ¼MðlÞ �Mð~uÞ: ð4:1Þ
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Differentiation with respect to l gives
ðl � ~uÞsJ0ðlÞ; Jð~uÞtþ sJðlÞ; Jð~uÞt ¼M0ðlÞ: ð4:2aÞ

Repeated differentiation yields, for 1 6 s 6 N � 1
oN�s
l os

~ufðl � ~uÞsJðlÞ; Jð~uÞtg
¼ ðl � ~uÞsJðN�sÞðlÞ; JðsÞð~uÞtþ ðN � sÞsJðN�s�1ÞðlÞ; JðsÞð~uÞt� ssJðN�sÞðlÞ; Jðs�1Þð~uÞt ¼ 0 ð4:2bÞ
and, if l 6¼ ~u
sJðpÞðlÞ; JðqÞð~uÞt ¼ ð�1Þqþ1
X
06s6p

ðp; sÞðs þ qÞ!ð�l þ ~uÞ�ðsþqþ1Þ
Mðp�sÞðlÞ

þ ð�1Þpþ1
X
06t6q

ðq; tÞðt þ pÞ!ðl � ~uÞ�ðtþpþ1Þ
Mðq�tÞð~uÞ: ð4:3Þ
For two equal eigenvalues l ¼ ~u, Eq. (4.2a) reduces to
sJðlÞ; JðlÞt ¼M0ðlÞ: ð4:4aÞ
Repeated differentiation yields
sJðN�sÞðlÞ; JðsÞðlÞt ¼ fs!ðN � sÞ!=ðN þ 1Þ!gMðNþ1ÞðlÞ ð0 6 s 6 N 6 3Þ: ð4:4bÞ

Eqs. (3.2) and (4.4b) yield, after lengthy manipulation
sðJWÞðrÞ; ðJWÞðN�rÞ
t ¼ r!ðN � rÞ!

X
06k6r

fk!ðN þ k � 1Þ!g�1fdðNþk�1ÞWðkÞ � dðkÞWðNþk�1Þg: ð4:5Þ
The relations Eqs. (4.1) and (4.5) will be used repeatedly in the following analysis.

4.2. The derivative rule

From Eq. (2.14a,b) one obtains, by using Eqs. (2.23) and (2.24)
h � ½-�w ¼ f;zUMðlÞg; ð4:6Þ

where U has the transpose matrix
UT �
0 1 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

2
64

3
75 ð4:7Þ
In the preceding derivation of zeroth-order eigensolutions, g is taken to be a nontrivial solution of Eq.
(2.18) corresponding to an eigenvalue l0. In the following investigation of higher-order eigensolutions, g
is considered tentatively to be a function of l, and the latter is regarded as a variable. The functional form
of g(l) will be specified later according to the type of the material. Instead of the constant vector of Eq.
(2.24), n will be redefined as the following function of l
nðlÞ ¼ JðlÞgðlÞ; ð4:8Þ

where J(l) is given by Eq. (2.22). Then Eq. (2.13) is replaced by the relation n1(l) = �ln2(l), and Eq.
(2.14a,b) define the functions h = h(l) and w = w(l), which are found to satisfy the relation (4.6) for arbi-
trary l. Differentiation of Eq. (4.6) yields additional identities
dh=dl � ½-�dw=dl ¼ Ufðdf;z=dlÞMg þ f;zðMgÞ0g; ð4:9aÞ
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d2h=dl2 � ½-�d2w=dl2 ¼ Ufðd2f;z=dl2ÞMg þ 2ðdf;z=dlÞðMgÞ0 þ f;zðMgÞ00g; ð4:9bÞ

d3h=dl3 � ½-�d3w=dl3 ¼ Ufðd3f;z=dl3ÞMg þ 3ðd2f;z=dl2ÞðMgÞ0 þ 3ðdf;z=dlÞðMgÞ00 þ f;zðMgÞ000g:
ð4:9cÞ
The zeroth-order eigensolutions of the preceding section are based on a nontrivial solution g of
M(l0)g = 0. Such a nontrivial solution is given by Eq. (3.3a) for a normal eigenvalue, by Eq. (3.10) for
an abnormal eigenvalue, and by an arbitrary vector if l0 is superabnormal. WithM(l0)g = 0, Eq. (4.6) re-
duces to h(l0)�[-]w(l0) = 0, i.e., the two groups of physical variables h = {ex, ey,cxy,cxz,cyz,/x,/y}

T and
w = {F, yy,F,xx,�F,xy,Wy,�W,x, 1,y,�1,x}

T, as obtained by taking the spatial derivatives of
v = f(x + l0y,l0)J(l0)g(l0), satisfy the constitutive relation h = [-]w, so that v is indeed an eigensolution.
To obtain an nth-order eigensolution, one needs to find a suitable function g(l) which satisfies the following
set of n + 1 relations at l = l0:
Mgj0 ¼ 0; ðMgÞ0j0 ¼ 0; . . . ; ðMgÞðnÞj0 ¼ 0: ðn 6 3Þ ð4:10Þ

Substitution of these relations into Eqs. (4.6) and (4.9a–c) gives
ðh � ½-�wÞj0 ¼ 0; ðdh=dl � ½-�dw=dlÞj0 ¼ 0; . . . ; ðdnh=dln � ½-�dnw=dlnÞj0 ¼ 0: ð4:11Þ

This implies that the constitutive relation is not only satisfied by the pair hj0 and wj0, but also by the suc-
cessive pairs of l-derivatives of h and w (evaluated at l = l0) up to the order n. Since the kth l-derivatives
of h and w are the spatial gradients of dkv=dlkj0, the kth equation in (4.11) implies that dkv/dlkj0 is a pie-
zoelectric solution. Let this solution be denoted by v[k]. Then
v½k� ¼ dkðf nÞ=dlkj0 ¼ dkðfJgÞ=dlkj0 ¼
X
06j6k

ðk; jÞf ðk�jÞðJgÞðjÞj0: ð4:12Þ
This expression involves the l-derivatives of the function f up to the order k if g(l0) is a nontrivial vector. In
that case v[k] is called a kth-order eigensolution. If g(l0) is the null vector, and if g(j)(l0) is the lowest-order
derivative of g(l) that does not vanish at l = l0, then the highest-order derivative of f appearing in v[k] is
f (k�j) and v[k] is called an eigensolution of the order k � j. Since the second, third and fourth elements of Jg
are identical to the three elements of g, the vector (Jg)(j)j0 is not null if and only if g(j)(l0) is not null. Hence
we have the following theorem:

Theorem 4 (The Derivative Rule). If a function g(l) satisfies the n + 1 conditions of Eq. (4.10), then for

every integer k such that 0 6 k 6 n,(Jg)(k)j0 is an eigenvector whenever it is not null. The corresponding

eigensolution is given by Eq. (4.12). This eigensolution is of the order k if g(l0) is not null; it is of the order
k � j if g(l) and its first j � 1 derivatives all vanish at l = l0.

Notice that the zeroth-order eigenvectors and eigenfunctions are given by (Jg)j0 and (fJg)j0, respectively.
Theorem 4 states that the higher-order eigenvectors and eigensolutions are obtained by evaluating the l-
derivatives of Jg and fJg of the various orders at l0. Hence the theorem may be referred to as the derivative
rule for determining the higher-order eigensolutions of a multiple eigenvalue. While the derivative relation
between the zeroth-order and the higher-order eigensolutions is known heuristically in anisotropic elastic-
ity, Theorem 4 points out that the rule is not unconditionally valid. It presupposes the validity of Eq. (4.10)
regarding the various derivatives of g(l), whose satisfaction in turn depends on an appropriate choices of
the functional form of g(l).

Three different kinds of functions g(l) are needed in the following analysis, one taken from the column
vectors ofW(l), another taken from the columns of I3, and the last kind from Eq. (3.10). All eigensolutions
of a normal eigenvalue are obtained by using the column vectors of W(l) as g(l). But for an abnormal or
superabnormal eigenvalue of multiplicity p, a combination of different kinds of g functions is needed to
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obtain a complete set of p independent eigensolutions. This combination depends crucially on the type and
multiplicity of the eigenvalue. When all independent eigensolutions associated with the simple and multiple
eigenvalues are combined, one obtains the general solution unique to a specific type of piezoelectric material.

4.3. Higher-order eigensolutions of a normal eigenvalue

If the characteristic equation (2.21) has a normal eigenvalue l0 of multiplicity p, then d(l) and its deriv-
atives up to the order p � 1 all vanish at l0 but the pth derivative does not. Eqs. (3.1) and (3.2) imply
MWj0 ¼ 0; ðMW0 þM0WÞj0 ¼ 0 if p P 2; ð4:13a;bÞ

ðMW00 þ 2M0W0 þM00WÞj0 ¼ 0 if p P 3; ð4:13cÞ

ðMW000 þ 3M0W00 þ 3M00W0 þM000WÞj0 ¼ 0 if p ¼ 4: ð4:13dÞ

Let g(l) be a column of the matrix functionW(l), i.e., g(l) =W(l)q, where q is a column of I3. Eq. (4.13a–
d) imply that the premises of Theorem 4 are satisfied for every n such that n 6 p � 1. Hence
JWqj0, (JWq) 0j0, . . . , (JWq)(n)j0 are all eigenvectors provided that they are not null. For a normal eigenvalue
l0,W(l0) is a rank one symmetric matrix so that, according to Eq. (3.3), it has at least one nonzero diagonal
element Wkk. Then the kth column of W(l0) is not a null vector, and the following theorem is established.

Theorem 5 (Eigensolutions of a normal eigenvalue). If l0 is a normal eigenvalue of multiplicity p, then

W(l0) has a nonzero diagonal element qTW(l0)q, where q is a column vector of I3. A set of p eigenvectors of
the orders increasing from 0 to p � 1 is given as follows along with the corresponding eigensolutions:
n½j� ¼ ðJWÞðjÞqj0 ¼ fJWðjÞ þ ðj; 1ÞJ0Wðj�1Þ þ ðj; 2ÞJ00Wðj�2Þ þ ðj; 3ÞJ000Wðj�3Þgqj0; ðj ¼ 0; . . . ; p � 1Þ
ð4:14aÞ

v½N � ¼ ðfNJWÞðNÞqj0 ¼
X
06j6N

ðN ; jÞðdjfN=dljÞj0n
½N�j� ðN ¼ 0; . . . ; p � 1Þ; ð4:14bÞ
where it is understood that W(j) = 0 if j is negative.

Eqs. (4.5) and (4.14a) imply an important expression for the binary product of any two eigenvectors of
arbitrary orders (0 6 p,q 6 3) that share a common eigenvalue:
sn½p�ðlÞ; n½q�ðlÞt ¼
X
06k6p

X
06l6q

ðp; kÞðq; lÞfk!l!=ðk þ l þ 1Þ!gðgðp�kÞÞTMðkþlþ1Þgðq�lÞ

¼ p!q!
X

qþ16s6pþqþ1

fs!ðp þ q þ 1� sÞ!g�1ðgðpþqþ1�sÞÞT
X

s�q6m6s

ðs;mÞMðmÞgðs�mÞ: ð4:15Þ
Eqs. (4.1)–(4.4) and (4.15) are formally identical to the corresponding relations for the eigenvectors of cou-
pled anisotropic laminated plates (Yin, 2003a), but the physical meaning of the variables and of their rela-
tions are very different in the two cases. Although the two key matrix functions J(l) andM(l) are different
for the two theories, they nonetheless satisfy the same set of formal identities (4.1)–(4.5) and (4.15). Some
important results concerning the algebraic structure and properties of the solution spaces follow directly
from these identities, regardless of the specific forms of material matrices and constitutive relations. This
is the underlying reason of the formal similarity of the different theories in many aspects. However, the
material functions J(l) andM(l) of the two theories have different dimensions and contain elements of dif-
ferent polynomial degrees. Such differences do affect the number and variety of cases in each theory, and the
forms of the general solution in the different cases.
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4.4. Eigenspace of a normal eigenvalue

The eigenvectors of the various orders associated with a common multiple eigenvalue are generally not
orthogonal. For a normal eigenvalue l0, the eigenvectors are given by Eq. (4.14a), where q is a column of I3
such that
W � qTWðl0Þq 6¼ 0: ð4:16Þ

Using Eqs. (3.1) and (3.2), Eq. (4.15) becomes
sn½p�ðlÞ; n½q�ðlÞt
¼ ðW dÞðpþqþ1Þp!q!=ðp þ q þ 1Þ!
¼ fdðpþqþ1ÞW þ ðp þ q þ 1ÞdðpþqÞW 0 þ ðp þ q þ 1; 2Þdðpþq�1ÞW 00

þ ðp þ q þ 1; 3Þdðpþq�2ÞW 00gp!q!=ðp þ q þ 1Þ! ð4:17aÞ
where any negative-order derivative that appears is taken to be zero, and
W ðkÞ � qTWðkÞðl0Þq ð1 6 k 6 3Þ: ð4:17bÞ

Let the p eigenvectors of the normal eigenvalue l0 of multiplicity p be arranged in the increasing order as

the columns of a 8 · p matrix Xp, and define the pseudometric of the eigenspace x[Np] = sXp, Xpb. Then, in
view of Eq. (4.17a), the following expressions apply for p = 1,2,3 and 4, respectively,
x½N1� ¼ ½d0W �; x½N2� ¼
0 d00W =2

d00W =2 d000W =6þ d00W 0=2

� �
ð4:18a;bÞ

x½N3� ¼
0 0 d000W =3

0 d000W =6 dð4ÞW =12þ d000W 0=3

d000W =3 dð4ÞW =2þ d000W 0=3 dð5ÞW =30þ dð4ÞW 0=6þ d000W 00=3

2
64

3
75 ð4:18cÞ

x½N4� ¼

0 0 0 dð4ÞW =4

0 0 dð4ÞW =12 dð5ÞW =20þ dð4ÞW 0=4

0 dð4ÞW =12 dð5ÞW =30þ dð4ÞW 0=6 x34

dð4ÞW =4 dð5ÞW =20þ dð4ÞW 0=4 x34 x44

2
6664

3
7775 ð4:18dÞ
where
x34 � fdð6ÞW þ 6dð5ÞW 0 þ 15dð4ÞW 00g=60;

x44 � fdð7ÞW þ 7dð5ÞW 0 þ 21dð5ÞW 00 þ 35dð4ÞW 000g=140:

Hence, for a normal eigenvalue, the matrices x[N1], x[N2], x[N3] and x[N4] are formally identical to the cor-
responding pseudometrics of coupled anisotropic laminated plates. The four matrices are all invertible, and
their inverse matrices may be given in closed analytic forms (identical to Eqs. (A.1)–(A.4) of Yin, 2003a).
They are called pseudometrics because the matrix x resulting from taking the binary products of the eigen-
vectors of the various orders is not real-valued, let alone positive definite. Although orthogonality of vec-
tors has been defined in terms of the binary product, length and angles are undefined in the complex vector
space. Any vanishing diagonal element in the matrix x, such as in Eq. (4.18b–d), implies that the corre-
sponding column vector of Xp has a vanishing binary product with itself, and therefore cannot be
normalized.
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One of the reasons that the pseudometric plays an important role is given by the following theorem,
which is valid irrespective of the type of eigenvalue:
Theorem 6 (Independence of eigenvectors). A set of (eight-dimensional) vectors is linearly independent if the

pseudometric formed by these vectors is a nonsingular matrix.

Proof. Let Xp be an 8 · p matrix. If x � XT
p IIXp is nonsingular, then for every nontrivial p-dimensional vec-

tor f, the image vector XT
p IIXpf is nontrivial. Then Xpf must be nontrivial. This implies that a linear com-

bination of the p columns of Xp vanishes only if all coefficients of the combination vanish, and hence the
columns are linearly independent. h

Only eigenvalues, but not eigenvectors and eigensolutions, are uniquely determined by the material.
Expressions different from, but equivalent to (4.14a,b), may be given for the eigensolutions of a normal
eigenvalue. If the eigenvectors (JW)(k)qj0 are replaced by ðJW=

p
W ÞðkÞqj0, then, instead of Eqs. (4.17)

and (4.18), one obtains a more concise form of the pseudometric that is independent of W and its deriva-
tives, and involves the derivatives of d only
xij ¼ sn½i�1�ðlÞ; n½j�1�ðlÞt ¼ dðiþj�1Þði � 1Þ!ðj � 1Þ!=ði þ j � 1Þ! ð4:19Þ
In the literature on anisotropic elasticity, the eigenvectors are sometimes normalized so as to have unit bin-
ary products with themselves. Such normalization serves no useful purpose, often leads to more compli-
cated results (in contrast to the simplification shown by Eq. (4.19) which uses eigenvectors whose binary
product with itself is not unity), and is not even possible for eigenvectors of abnormal and superabnormal
eigenvalues that have vanishing binary products with themselves.
5. Higher-order eigenvectors of abnormal eigenvalues

5.1. Eigenspace of a double abnormal eigenvalue

For an abnormal eigenvalue l0 of multiplicity 2, the matrix M(l0) has the form of Eq. (3.7b) with a non-
vanishing kth diagonal element mk. Two independent zeroth-order eigenvectors are Jg1j0 and Jg2j0, where g1

and g2 are given by Eq. (3.10a–c), depending on the integer k. Taking the example k = 2, the matrix func-
tion Uk(l) has the expression
U2ðlÞ ¼
M22ðlÞ M12ðlÞ 0

�M12ðlÞ M22ðlÞ �M23ðlÞ
0 M23ðlÞ M22ðlÞ

2
64

3
75: ð5:1Þ
Then
MðlÞU2ðlÞðI3 � qkq
T
k Þ ¼

W 33ðlÞ 0 �W 13ðlÞ
0 0 0

�W 13ðlÞ 0 W 11ðlÞ

2
64

3
75: ð5:2Þ
The expression vanishes at l = l0 since W(l0) = 0. Differentiating this identity, evaluating at l = l0,
premultiplying the result by W 0(l0), and using Eqs. (3.6a,b) and (5.2), one obtains,
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W 0
11ðl0Þ W 0

12ðl0Þ W 0
13ðl0Þ

W 0
12ðl0Þ W 0

22ðl0Þ W 0
23ðl0Þ

W 0
13ðl0Þ W 0

23ðl0Þ W 0
33ðl0Þ

2
64

3
75

W 0
33ðl0Þ 0 �W 0

13ðl0Þ
0 0 0

�W 0
13ðl0Þ 0 W 0

11ðl0Þ

2
64

3
75

¼W0M0U2ðI3 � qkq
T
k Þj0 þW0MU0

2ðI3 � qkq
T
k Þj0 ¼ ðd00=2ÞU2ðI3 � qkq

T
k Þj0;
where d00(l0) does not vanish because l0 is a double eigenvalue. After deleting the kth row and the kth col-
umn, the preceding equalities reduce to the following expression evaluated at l0
W 0
11 W 0

13

W 0
13 W 0

33

� �
W 0

33 �W 0
13

�W 0
13 W 0

11

� �
¼ ðd00=2ÞM22I2 ð5:3Þ
Since [g1,g2] is the 3 · 2 matrix obtained by deleting the kth column of U2, the pseudometric
x ¼ s½Jg1; Jg2�; ½Jg1; Jg2�t ¼ ½g1; g2�
T
sJ; Jt½g1; g2� ¼ ½g1; g2�

T
M0ðl0Þ½g1; g2�
is obtained from the 3 · 3 matrix ðUT
kM

0UkÞj0 by eliminating the kth row and k th column. The latter may
be obtained by using Eq. (5.1) and the derivative of (5.2). One has
x½A2� ¼ M22

W 0
33 �W 0

13

�W 0
13 W 0

11

� �
x�1

½A2� ¼ 2=ðd00M2
22Þ

W 0
11 W 0

13

W 0
13 W 0

33

� �
; ð5:4a;bÞ
where (5.4b) follows from Eq. (5.3). For the cases k = 1 and k = 3, the results for x and x�1 may be ob-
tained by permuting the indices. They imply, in particular, that W 0(l0) is not a null matrix.

Since x is a symmetric matrix, a 2 · 2 nonsingular matrix s can always be found such that D � sTxs is a
diagonal matrix. Then D is the pseudometric referred to another set of two eigenvectors given by the two
columns of J[g1, g2]sj0, because
sJ½g1; g2�s; J½g1; g2�st ¼ sTsJ½g1; g2�; J½g1; g2�ts ¼ sTxs: ð5:5Þ
Theorem 7 (Eigensolutions of a double abnormal eigenvalue). For a double abnormal eigenvalue l0, M(l0)

has a nonvanishing diagonal element Mkk(l0). Let n1 = Jg1j0 and n2 = Jg2j0, where g1 and g2 are the two

remaining columns of the matrix function Uk(l) of Eq. (3.8) after having the kth column deleted. Then n1 and n2

are zeroth-order eigenvectors. They determine a pseudometric x such that ðd00M2
kkÞx�1 is the 2 · 2 matrix

obtained from W 0(l0) by deleting the kth row and kth column. Furthermore, a nonsingular transformation s

may be found so that the transformed zeroth-order eigenvectors n01 ¼ n1s and n02 ¼ n2s, yield a pseudometric

D = sTxs which is a diagonal matrix.

Notice that the present results for a double abnormal eigenvalue are quite different from the results for a
double abnormal eigenvalue in 2-D elasticity and in the coupled anisotropic plate theory. In the latter re-
sults, the two zeroth-order eigenvectors are simply given by the two columns of J(l0) [there J(l0) has the
dimension 6 · 2 or 8 · 2 in contrast to the present J(l0) that has the dimension 8 · 3].
5.2. Abnormal-a eigenvalues

If p P 3 for an abnormal eigenvalue, or if p = 4 for a superabnormal eigenvalue, then high-order eigen-
solutions are needed to make up for the deficiency in the independent eigensolutions. We first consider
abnormal eigenvalues. With a null matrix W(l0), Eq. (4.13b–d) reduce to the following at l = l0:
MW0j0 ¼ 0; ð2M0W0 þMW00Þj0 ¼ 0 if p P 3: ð5:6a;bÞ
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ð3M00W0 þ 3M0W00 þMW000Þj0 ¼ 0 if p ¼ 4: ð5:6cÞ

Taking g(l) to be a column of W(l), then the premises of Theorem 4 are satisfied but g(l0) and Jgj0 are
null vectors. Hence if (Jg)(k)j0 is not null, it is an eigenvector of order lower than k.

For an abnormal-a eigenvalue of multiplicity p, W 0(l0) has a nontrivial column W 0(l0)q, where q is the
kth column of I3. Then (JW)(j)qj0 is an eigenvector of the order j � 1 (j = 1,2, . . .,p � 1). Hence one has the
following zeroth-order and first-order eigensolutions for p P 3:
n1 ¼ ðJWÞ0qj0 ¼ JW0qj0; v1 ¼ ðfJWÞ0qj0 ¼ f ðl0Þn1; ð5:7a;bÞ

n2 ¼ ðJWÞ00qj0 ¼ ðJW00 þ 2J0W0Þqj0; ð5:8aÞ

v2 ¼ ðfJWÞ00qj0 ¼ f ðl0Þn2 þ 2f 0ðl0Þn1: ð5:8bÞ
If p = 4, a second-order eigensolution is given by
n3 ¼ ðJWÞ000qj0 ¼ ðJW000 þ 3J0W00 þ 3J00W0Þqj0; ð5:9aÞ

v3 ¼ ðfJWÞ000qj0 ¼ f ðl0Þn3 þ 3f 0ðl0Þn2 þ 3f 00ðl0Þn1: ð5:9bÞ
Eqs. (5.8)–(5.10) give p � 1 eigenvectors for an abnormal-a eigenvalue. An additional (zeroth-order)
eigenvector remains to be found, and has to be obtained in different ways, depending on the matrices
M(l0) andW

0(l0). It will be obtained using Eq. (3.10) and the following two lemmas, whose proof is given
in Appendix A.

Lemma 1. Consider the symmetric matrix function M(l) whose elements are given by Eq. (2.20). If M(l0) is

of rank 1 and p P 3, then M22(l0) and M33(l0) cannot both vanish.

Lemma 2. For every abnormal eigenvalue l0 of multiplicity p P 3 such that W 0(l0) is not null, there exist two

distinct indices i and j such that Mii(l0) 5 0 and W 0
jjðl0Þ 6¼ 0.

Lemmas 1 and 2 imply that there are only four possible cases of abnormal-a eigenvalue:

(i) M22(l0)5 0 and W 0
11ðl0Þ 6¼ 0;

(ii) M22(l0)5 0 and W 0
33ðl0Þ 6¼ 0;

(iii) M33(l0)5 0 and W 0
11ðl0Þ 6¼ 0;

(iv) M33(l0)50 and W 0
22ðl0Þ 6¼ 0.

The eigenvectors for these four subcases are given by the following theorem.

Theorem 8 (Eigenvectors of an abnormal-a eigenvalue). For an abnormal-a eigenvalue, one zeroth-order

eigenvector n1 is given as follows for the cases (i)–(iv), respectively
Jf0;�M23;M22gj0; JfM22;�M12; 0gj0; Jf0;M33;�M23gj0; JfM33; 0;�M13gj0: ð5:10aÞ

Additional eigenvectors of the zeroth and higher orders are given by
n2 ¼ JW0qj0; . . . ; np ¼ ðJWÞðp�1Þqj0: ð5:10bÞ
The complete set consists of p independent eigenvectors.

These eigenvectors determine the following pseudometrics for p = 3 and 4, respectively, and their invert-
ibility implies the independence of the eigenvectors:



2662 W.-L. Yin / International Journal of Solids and Structures 42 (2005) 2645–2668
x ¼

MjjW 0
kk 0 0

0 0 d000W 0
kk=3

0 d000W 0
kk=3 d000W 00

kk=3þ dð4ÞW 0
kk=6

2
664

3
775; ð5:11aÞ

x½N4� ¼

MjjW 0
kk 0 0 0

0 0 0 dð4ÞW 0
kk=4

0 0 dð4ÞW 0
kk=6 dð4ÞW 00

kk=4þ dð5ÞW 0
kk=10

0 dð4ÞW 0
kk=4 dð4ÞW 00

kk=4þ dð5ÞW 0
kk=10 dð4ÞW 000

kk=4þ 3dð5ÞW 00
kk=20þ dð6ÞW 0

kk=20

2
66664

3
77775;

ð5:11bÞ

where Mjj and W 0

kk are the nonvanishing diagonal elements of M(l0) and W
0(l0) that appear in the defini-

tion of each cases (i)–(iv).

5.3. Abnormal-b eigenvalues

Next consider an abnormal-b eigenvalue, for which the matrixW 0(l0) is null. None of the elements in the
first row and first column of W00(l0) can vanish, because the corresponding elements of W(l) are quartic
and quintic functions with real coefficients, so that they cannot vanish at l = l0 along with their
first and second derivatives. We let g(l) =W(l)q1, where q1 is the first column of I3. Then, with W

0(l0)
dropped and with q replaced by q1, the zeroth-order eigenvector of Eq. (5.7) becomes the null vector, while
the first- and second-order eigensolutions of Eqs. (5.8) and (5.9) change into zeroth-and first-order eigen-
solutions, respectively. This yields p � 2 eigensolutions, so that two additional eigensolutions remain to be
found, one zeroth-order and another first-order.

The premises of Lemma 1 are satisfied by an abnormal-b eigenvalue of multiplicity 3 or 4. One needs
only consider the case M22(l0) 5 0, since the other case M33(l0)5 0 is similar. We choose
g(l) = {0,�M23(l),M22(l)}

T, in accordance with g2 in Eq. (3.10b). Then Mg = {�W13(l),0,W11(l)}
T,

so that Mgj0 = (Mg) 0j0 = 0 follows from W(l0) =W 0(l0) = 0. Thus Jgj0 is a zeroth-order eigenvector
and (Jg) 0j0 is of the first-order. These eigenvectors together with the previous p � 2 eigenvectors based
on g =Wq1 form a complete set of p eigenvectors associated with l0:

Theorem 9 (Eigensolutions of an abnormal-b eigenvalue). For an abnormal-b eigenvalue l0 (of multiplicity

p P 3), one zeroth-order eigensolution v1 and one first-order eigensolution v2 are given as follows provided that

M22(l0) 5 0
n1 ¼ Jf0;�M23;M22gTj0; v1 ¼ f ðx þ l0yÞn1; ð5:12a;bÞ

n2 ¼ d=dlðJf0;�M23;M22gTÞj0; v2 ¼ f ðx þ l0yÞn2 þ f 0ðx þ l0yÞn1: ð5:13a;bÞ
If M22(l0) = 0, then the vector function {0, �M23,M22}
T in the preceding expressions should be replaced by

{0,M33,�M23}
T. A second zeroth-order eigensolution is given by
n3 ¼ ðJWÞ00q1j0 ¼ JW00q1j0; v3 ¼ ðfJWÞ00q1j0 ¼ f ðl0Þn1: ð5:14a;bÞ

If p = 4, then one has another first-order eigensolution:
n4 ¼ ðJWÞ000q1j0 ¼ ðJW000 þ 3J0W00Þq1j0; ð5:15aÞ

v4 ¼ ðfJWÞ000q1j0 ¼ f ðx þ l0yÞn4 þ 3f 0ðx þ l0yÞJW00q1j0: ð5:15bÞ
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The preceding eigenvectors yield the pseudometric:
x ¼ hx1;x2i; ð5:16aÞ

where hx1,x2i denotes a block-diagonal matrix composed of two diagonal blocks, with
x1 ¼
0 MkkW 00

11=2

MkkW 00
11=2 ðMkkW 000

11 þ 3M 0
kkW

00
11Þ=6

� �
ð5:16bÞ
and x2 is given by the following 1 · 1 or 2 · 2 matrix for p = 3 and 4, respectively
½d000W 11�;
0 dð4ÞW 00

11=4

dð4ÞW 00
11=4 dð4ÞW 000

11=4þ ð3=20Þdð5ÞW 00
11

" #
ð5:16c;dÞ
5.4. Eigenspace of a superabnormal eigenvalue

For a superabnormal eigenvalue l0, the matrixM(l0) is null so that J(l0)q is an eigenvector for whatever
g. Choosing g to be the three columns of I3, successively, one obtains three independent zeroth-order eigen-
vectors given by the three columns of J(l0). Multiplication of each eigenvector by an analytic function re-
sults in a set of three independent zeroth-order eigensolutions. For p = 3, the three eigenvectors yield the
pseudometric
x ¼ sJðl0Þ; Jðl0Þt ¼M0ðl0Þ: ð5:17Þ

Since M(l0) is null, the adjoint matrix W(l0) and its derivative W 0(l0) are both null. Eq. (3.2) with n = 3
reduces to 3M 0W00 = d

000
I3. Hence M 0 is invertible and
x�1 ¼ f3=d000ðl0ÞgW00ðl0Þ: ð5:18Þ

If p = 4, we choose the first two zeroth-order eigensolutions as follows:
n1 ¼ Jðl0Þq2; n2 ¼ Jðl0Þq3; v1 ¼ f ðx þ l0yÞn1; v2 ¼ f ðx þ l0yÞn2: ð5:19Þ

The third and fourth eigensolutions are chosen to be identical to v3 and v4 for the case of a quadruple abnor-
mal-b eigenvalue, given by Eqs. (5.14a,b) and (5.15a,b), respectively. Then x = hx1,x2i, wherex2 is given by
Eq. (5.16d), and x1 is the 2 · 2 submatrix at the lower right corner of M(l0). Notice that x is nonsingular
Det½x� ¼ �ðW 11d
0000
=4Þ2ðM 0

22M
0
22 � M 02

23Þj0 ¼ �ðW 11d
0000
=4Þ2ðl0 � �l0Þ

2ðb55a11 þ c215Þ > 0:
6. Concluding remarks

The key relation in 2-D piezoelectricity is Eq. (2.17). When the stress components and the electric dis-
placement are considered as the primary unknown variables, this eigenrelation directly implies Eq.
(2.18), from which both the eigenvalues and the reduced eigenvector g may be solved in terms of the ele-
ments Mij(l0) of Eq. (2.20). All elements are polynomial functions of l. The resulting eigenvectors are also
polynomial functions. The present choice of the primary and secondary unknown variables, and the adop-
tion of [-] as the constitutive matrix, are in agreement with the formalism used by Sosa (1991) for special
transversely isotropic materials. Due to uncoupling of antiplane mode from both in-plane mode and the
electric field in that special case, the dimension of eigenvectors and the degree of the characteristic equation
both reduce from eight to six.

In most works on piezoelectricity (Tiersten, 1969; Wang and Zheng, 1995; Sosa and Castro, 1994;
Bisegna and Maceri, 1996; Ding et al., 1996; Heyliger, 1997; Vel and Batra, 2000; Shodja and Kamali,
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2003), the primary unknown variables are taken to be the displacements and the electric field. The consti-
tutive matrix used in such theories is the inverse matrix of [-], since the roles of the primary and secondary
unknown variables are reversed. The inverse formalism is an extension of the Eshelby–Stroh formalism of
2-D elasticity, with the electric field potential included as an additional primary variable. The key relations
of this inverse formalism also follow directly from the basic eigenrelation of Eq. (2.17), but in a different
manner. Premultiplying Eq. (2.17) by HT[-]�1, one obtains
HT½-��1Hfn5; n6; n7; n8gT ¼ 0: ð6:1Þ

Hence the eigenvalues are determined by the characteristic equation
Det½HT½-��1H� ¼ 0; ð6:2Þ

which is certainly equivalent to Eq. (2.21), because both characteristic equations issue from the same eigen-
relation (2.17), which may be rewritten in two alternative forms:
½½-�W;H�fn2; n3; n4; n5; n6; n7; n8gT ¼ 0; ð6:3aÞ

½W; ½-��1H�fn2; n3; n4; n5; n6; n7; n8gT ¼ 0: ð6:3bÞ

The first expression yields Eq. (2.18) after eliminating {n5,n6,n7,n8}

T whereas the second yields Eq. (6.1)
after eliminating {n2,n3,n4}

T Therefore, the eigenvalues of Eqs. (2.18) and (6.1) are both identical to those
of Eq. (6.3), and hence cannot be mutually different. Furthermore, for each solution {n2,n3,n4}

T of Eq.
(2.18), the eigenrelation (2.17) determines a solution {n5,n6,n7,n8}

T of Eq. (6.1), and vice versa, as follows:
fn5; n6; n7; n8gT ¼ P1ðl0Þ½-�Wðl0Þfn2; n3; n4gT; ð6:4aÞ

fn2; n3; n4gT ¼ P2ðl0Þ½-��1Hðl0Þfn5; n6; n7; n8gT; ð6:4bÞ

where
P1ðlÞ �

1 0 0 0 0 0 0

0 1=l 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

2
6664

3
7775

P2ðlÞ �
0 �1 0 0 0 0 0

0 0 0 �1 0 0 0

0 0 0 0 0 �1 0

2
64

3
75
Clearly, this simple proof of the equivalence of the two formalisms is also valid for 2-D anisotropic elas-
ticity, which is a special case without piezoelectric coupling.

Eq. (6.3) clearly shows the dualism of the eigenrelation with respect to the two sets of variables
{n2,n3,n4} and {n5,n6,n7,n8}. But there is an asymmetry in the dualism, because the existence of the Airy
stress function implies that n1 = �ln2 and there is no corresponding relation for {n5,n6,n7,n8}. Although
Eq. (6.4a,b) show that the present formalism and the inverse formalism are analytically equivalent, the
resulting algebraic expressions of the eigenvectors and general solutions are entirely different, since all re-
sults of one formalism are expressed in terms of the elements of [-], whereas the other formalism involves
the elements of [-]-1. The zeroth-order eigenvectors of the inverse formalism may be obtained from the
explicit solutions {n5,n6,n7,n8}

T of Eq. (6.1). This explicit analytical solution, however, is far more cumber-
some than the solution of Eq. (2.18), for the simple reason that the adjoint matrix of a 4 · 4 matrix
HT[-]�1His also 4 · 4, but each one of its elements is a 3 · 3 cofactor. Furthermore, the higher-order
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eigenvectors of degenerate materials are related to the zeroth-order ones by the derivative rule, and the
complexity of expression grows dramatically when the l-derivatives of the various order are taken from
the lengthy analytical expressions of {n5,n6,n7,n8}

T Indeed, none of the previous works using the inverse
formalism has determined the explicit expressions of the eigenvectors of general 2-D piezoelectricity even
for the nondegenerate case, and none can be used, in a practical sense, to obtain Green�s functions and
other important analytical solutions for the various degenerate cases.

There have been suggestions that a suitable choice of the formalism depends on the type of boundary
conditions, e.g., whether the mechanical boundary conditions are kinematical or kinetic. However, the eight
dimensional solution vector v obtained in the present analysis contains the stress potentials and the func-
tion 1 as the first four elements, and u, v, w and / as the last four elements. Because of the concurrent pres-
ence of the two groups of variables in v, and because of the simple relations of Eq. (6.4a,b), the present form
of solutions is indiscriminately applicable to all types of boundary conditions, whether they be kinematical,
kinetic, or mixed, and whether the boundary conditions involve the electric field or the electric displacement
vector. Hence the type of boundary conditions is not a factor affecting the suitability of a particular formal-
ism. The proper choice is dictated only by the mathematical structure of the governing equations, i.e., Eq.
(6.1) versus Eq. (2.18). Hence the excessive complexity associated with the inverse formalism is needlessly
incurred, and brings no redeeming merit.
Appendix A

Proof of Lemma 1. Suppose the contrary were true, then v = {m1,0,0}
T in Eq. (4.2) so that M11(l0) = m1 is

the only nonzero element of M(l0). Hence, except for M11(l0), all other elements of the matrix function
M(l0) contain the factor l � l0. Being polynomial functions with real coefficients, they must also contain
the factor l � �l0. Then the three minors W11(l0), W12(l0) and W13(l0) of Det[M(l0)] must contain the
common factor ðl � l0Þ2ðl � �l0Þ2. Hence
Mðl0Þ ¼
m1 0 0

0 0 0

0 0 0

2
64

3
75; W0ðl0Þ ¼

0 0 0

0 W 0
22 W 0

23

0 W 0
23 W 0

33

2
64

3
75: ðA:1a;bÞ
Furthermore, all elements ofM 0(l0) do not vanish, except possibly M 0
11ðl0Þ, because M12, M13, M22, M23

and M33 are cubic or quadratic functions of l and, therefore, cannot have the factor ðl � l0Þ
2ðl � �l0Þ

2. The
preceding conclusions including Eq. A.1a,b follow only from the premise of a rank 1 matrix M(l0) with
M22(l0) = M33(l0) = 0, regardless of the multiplicity p. If p P 3, then, by substituting Eq. A.1a,b into
(5.6b), and taking the element of the resulting matrix equation in the first row and the first column, one
obtains
m1W 00
11ðl0Þ ¼ 0; ðA:2Þ
where m1 5 0. But this leads to a contradiction since W 00
11ðl0Þ cannot vanish along with W11(l0) and

W 0
11ðl0Þ. h

Proof of Lemma 2. The lemma will be proved by contradiction. Assuming the contrary to be true, then
W 0(l0) cannot have more than one nonzero diagonal element. [Consider, for example, that the two diagonal
elements W 0

11ðl0Þ and W 0
22ðl0Þ do not vanish. Then the falsity of Lemma 2 implies that

M11(l0) = M22(l0) = M33(l0) = 0. With W(l0) = 0, one then has M23(l0)
2 = M13 (l0)

2 = M12(l0)
2 = 0, so
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that the eigenvalue l0 is superabnormal, rather than abnormal.] Hence there are only two possible cases: (a)
W 0

11ðl0Þ ¼ W 0
22ðl0Þ ¼ W 0

33ðl0Þ ¼ 0 and (b) there is an index k such that W 0
kkðl0Þ 6¼ 0 and

Mjjðl0Þ ¼ W 0
jjðl0Þ ¼ 0 whenever j5k. We show in the following that both cases lead to a null matrix

W 0(l0), contradicting the assumption that l0 is an abnormal-a eigenvalue.
Consider first Case (b). The index k cannot be 1 since M22(l0) and M33(l0) cannot both vanish according

to Lemma 1. Furthermore, since the adjoint matrix W(l0) is null, if a diagonal element Mjj(l0) of M(l0)
vanishes then the jth row and column of M(l0) are null vectors. Hence in Case (b), M(l0) has only one
nonzero element Mkk(l0), and k is either 2 or 3. Then the kth row of Eq. (5.6a) implies that the kth row of
W 0(l0) is a null vector. Hence the only nonzero diagonal element W 0

kkðl0Þ of W 0(l0) must also vanish, so
that l0 is of the type abnormal-b rather than abnormal-a.

Now consider Case (a). The matrix W 0(l0) is singular since its three columns are all orthogonal to the
single independent vector of the rank one matrix M(l0), as implied by Eq. (5.6a). Hence
Det½W0ðl0Þ� ¼ 2W 0

12ðl0ÞW 0
13ðl0ÞW 0

13ðl0Þ ¼ 0. Then the upper-right triangular region of the matrix has
only two nonzero off-diagonal elements, and they cannot both vanish since W 0(l0) is not null.
Hence W 0(l0) has the following forms, respectively, for the three cases W 0

12ðl0Þ ¼ 0;W 0
23ðl0Þ ¼ 0 and

W 0
13ðl0Þ ¼ 0:
W0ðl0Þ ¼
0 0 W 0

13

0 0 W 0
23

W 0
13 W 0

23 0

2
64

3
75;

0 W 0
12 0

W 0
12 0 W 0

23

0 W 0
23 0

2
64

3
75;

0 W 0
12 W 0

13

W 0
12 0 0

W 0
13 0 0

2
64

3
75; ðA:3a;b;cÞ
In each case, the matrix has one and only one nonvanishing row and column, which will be referred to as
the ith. Then Eq. (5.6a) requires that the ith row and column ofM(l0) must be null, so that, for i = 1,2, and
3, respectively, this symmetric matrix has the following forms:
Mðl0Þ ¼
M11 M12 0

M12 M22 0

0 0 0

2
64

3
75;

M11 0 M13

0 0 0

M13 0 M33

2
64

3
75;

0 0 0

0 M22 M23

0 M23 M33

2
64

3
75 ðA:4a;b;cÞ
and the two off-diagonal elements of the ith row of Eq. (5.6b) give
M 0
33W

0
13 ¼ M 0

33W
0
23 ¼ 0; M 0

22W
0
12 ¼ M 0

22W
0
23 ¼ 0; M 0

11W
0
12 ¼ M 0

11W
0
13 ¼ 0: ðA:5a;b;cÞ
For i = 1, M 0
33ðl0Þ cannot vanish along with M33(l0) since M33(l) is quartic in l, whereas W 0

13 and W 0
23 can-

not both vanish unlessW 0(l0) is null. Hence the two equalities in Eq. (A.5a) imply thatW 0(l0) is null. Then
the eigenvalue is abnormal-b, contrary to the assumption of this lemma. A similar argument applies to the
case i = 2 but not to i = 3 because M11(l) is a quartic function of l, not quadratic. But if W 0

12 and W 0
13 do

not both vanish, then the two equalities in Eq. (A.5c) imply that M 0
11 must vanish along with M11, M12 and

M13. Then
W 0
12 ¼ M23M 0

13 � M33W 0
12; W 0

13 ¼ M23M 0
12 � M22W 0

13; ðW 0
12Þ

2 ¼ �M33q
T
1M

0ðl0ÞW0ðl0Þq1;

ðW 0
13Þ

2 ¼ �M22q
T
1M

0ðl0ÞW0ðl0Þq1:
However, with M11 = M12 = M13 = 0, Eq. (5.6b) yields
qT
1M

0ðl0ÞW0ðl0Þ ¼ �ð1=2ÞqT
1Mðl0ÞW00ðl0Þ ¼ 0:
Therefore, ðW 0
12Þ

2 ¼ ðW 0
13Þ

2 ¼ 0 so thatW0ðl0Þ ¼ 0. This again results in a contradiction to the assumption
of an abnormal-a eigenvalue. h
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Appendix B

(1) Normal eigenvalue p = 1,2,3,4
Eigenvectors and eigensolutions. Eq. (4.14a,b)
Pseudometrics. Eq. (4.18a–d)

(2) Abnormal eigenvalue of multiplicity 2

Eigenvectors. M(l0) has a nonzero element at the kth diagonal position. Two zeroth-order eigenvectors
are J(l0)g1(l0) and J(l0)g2(l0), where g1(l) and g2(l) are given by Eqs. (3.10a), (3.10b) or (3.10c) depend-
ing on the value of k.

Pseudometric. Eq. (5.4a).
(3) Abnormal-a eigenvalue, p P 3.

The eigenspace is separated into two orthogonal subspaces
First subspace. One zeroth-order eigenvector given by one of the expressions of Eq. (5.10a), depending

on the subcase.
Second subspace. Eq. (5.10b) gives one zeroth-order and one first-order eigenvector if p = 3, and an addi-

tional eigenvector of the second order if p = 4.
Pseudometrics. Eqs. (5.11a) and (5.11b), respectively, for p = 3 and 4.

(5) Abnormal-b eigenvalue, p P 3.
The eigenspace is separated into two orthogonal subspaces
First subspace. One zeroth-order and one first-order eigenvector given respectively by Eqs. (5.12a) and

(5.13a) if M22(l0) 5 0; otherwise replace {0,�M33,M22} by {0,M33,�M23}
T in (5.12a) and (5.13a). The

pseudometric is given by Eq. (5.16b) with k = 2 or 3, depending on whether M22(l0) does not or does
vanish.

Second subspace. One zeroth-order eigenvector given by Eq. (5.14a), an additional eigenvector of the
first-order given by (5.15a) in the case p = 4. The pseudometric is given by Eq. (5.16c) if p = 3 and
(5.16d) if p = 4.
(6) Superabnormal eigenvalue p P 3

Eigenvectors. Three zeroth-order eigenvectors are given by the three column of J(l0) For p = 4,
Eq. (5.15a) gives a first-order eigenvector.

Pseudometrics. Eqs. (5.17) and (5.19) for p = 3, 4, respectively.
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